Users can remove all display ads (not sponsors) for a small fee. Click for info (must be logged in)

fluctuate

In quantum physics, a quantum fluctuation (or vacuum state fluctuation or vacuum fluctuation) is the temporary random change in the amount of energy in a point in space, as prescribed by Werner Heisenberg's uncertainty principle. They are tiny random fluctuations in the values of the fields which represent elementary particles, such as electric and magnetic fields which represent the electromagnetic force carried by photons, W and Z fields which carry the weak force, and gluon fields which carry the strong force. Vacuum fluctuations appear as virtual particles, which are always created in particle-antiparticle pairs. Since they are created spontaneously without a source of energy, vacuum fluctuations and virtual particles are said to violate the conservation of energy. This is theoretically allowable because the particles annihilate each other within a time limit determined by the uncertainty principle so they are not directly observable. The uncertainty principle states the uncertainty in energy and time can be related by



Δ
E

Δ
t




1
2







{\displaystyle \Delta E\,\Delta t\geq {\tfrac {1}{2}}\hbar ~}
, where 1/2ħ ≈ 5.27286×10−35 Js. This means that pairs of virtual particles with energy



Δ
E


{\displaystyle \Delta E}
and lifetime shorter than



Δ
t


{\displaystyle \Delta t}
are continually created and annihilated in empty space. Although the particles are not directly detectable, the ***ulative effects of these particles are measurable. For example, without quantum fluctuations, the "bare" mass and charge of elementary particles would be infinite; from renormalization theory the shielding effect of the cloud of virtual particles is responsible for the finite mass and charge of elementary particles. Another consequence is the Casimir effect. One of the first observations which was evidence for vacuum fluctuations was the Lamb shift in hydrogen. In July 2020, scientists reported that quantum vacuum fluctuations can influence the motion of macroscopic, human-scale objects by measuring correlations below the standard quantum limit between the position/momentum uncertainty of the mirrors of LIGO and the photon number/phase uncertainty of light that they reflect.

View More On Wikipedia.org
  • 8

    Dan

    Administrator From On the forum.
    • Messages
      2,785
    • Directory
      6
    • Reaction score
      1,222
    • Points
      113
  • 1

    GrahamM

    Plumbers Arms member From Renfrewshire
    • Messages
      2,046
    • Reaction score
      479
    • Points
      83
  • Back
    Top
    AdBlock Detected

    We get it, advertisements are annoying!

    Sure, ad-blocking software does a great job at blocking ads, but it also blocks useful features of our website. For the best site experience please disable your AdBlocker.

    I've Disabled AdBlock